(1) cwea EСI MATH

KENT O. MCINTOSH
SENIOR INDUSTRIAL-WASTE INSPECTOR (RETIRED)

Agenda

- Introduction
- Presentation
- Time permitting, more "live" examples

Your Path to Certification

Explore \& Learn

Read Your
Candidate
Handbook \&
Study Guide, Begin gathering
your documentation

Assess Your Knowledge, Skills \& Abilities

Review the KSAs and determine your areas of strength and weakness. Identify knowledge gaps you need to fill.

Identify
Resources to Fill Your KSA Gaps

Books, workshops, local sections training, CWEA state training, youtube, community colleges

Attend a Cert Prep Session

Learn what to expect at the test site, resources to tap into and helpful hints/tools, take a sample test

Apply for Certification

Get your documentation ready and apply. You'll have 3 months to take your test once you are approved.

REFERENCES

- This presentation (as a PDF file)
- Applied Math for Wastewater System Operators, State of Tennessee [App. Math Wastewater]
- ECI Grade 1 Study Guide, CWEA [ECI 1 Study Guide]
- ECI Grade 3 Study Guide, CWEA [ECI 2 Study Guide]
- IWI Study Manual, CWEA
- Pretreatment Facility Inspection, OWP, CSUS [PFI]

All but the last (PFI) are available for download (https://cwea.app.box.com/s/nizgdiv19bt3cthuxtimj2cy8irlqnvt)

Equivalents \& Formulas

KSA 101 math

- Recall how to calculate pH of an aqueous solution.
- Demonstrate how to balance chemical equations, identify acids and bases, and perform basic dilutions and neutralization calculations.

Basic dilutions

- $N=$ normality
- Can be replaced with concentration
- $V=$ volume or flow

$$
N_{1} \times V_{1}=N_{2} \times V_{2}
$$

OR

$$
C_{1} \times V_{1}=C_{2} \times V_{2}
$$

- Normality is also a measure of concentration
- Units on both sides of eqn must be the same ($\mathrm{N}, \mathrm{mg} / \mathrm{L}, \mathrm{gpm}$, cfs, etc.)

Basic dilutions, problem

An operator needs to make 10 gallons of a bleach dilution with a concentration $25 \mathrm{mg} / \mathrm{L}$. The bleach on hand has a concentration of $100 \mathrm{mg} / \mathrm{L}$. How many gallons of the concentrate must be used to achieve the dilution?

$$
C_{1} \times V_{1}=C_{2} \times V_{2}
$$

Basic dilutions, problem

An operator needs to make 10 gallons of a bleach dilution with a concentration $25 \mathrm{mg} / \mathrm{L}$. The bleach on hand has a concentration of $100 \mathrm{mg} / \mathrm{L}$. How many gallons of the concentrate must be used to achieve the dilution?

$$
C_{1} \times V_{1}=C_{2} \times V_{2}
$$

$\mathrm{C}_{1}=25 \mathrm{mg} / \mathrm{L}$
$\mathrm{V}_{1}=10 \mathrm{gal}$
$C_{2}=100 \mathrm{mg} / \mathrm{L}$
$V_{2}=$?

Basic dilutions, answer

An operator needs to make 10 gallons of a bleach dilution with a concentration $25 \mathrm{mg} / \mathrm{L}$. The bleach on hand has a concentration of $100 \mathrm{mg} / \mathrm{L}$. How many gallons of the concentrate must be used to achieve the dilution?

$$
\begin{array}{ll}
\mathrm{C}_{1}=25 \mathrm{mg} / \mathrm{L} & \mathrm{~V}_{1}=10 \mathrm{gal} \\
\mathrm{C}_{2}=100 \mathrm{mg} / \mathrm{L} & \mathrm{~V}_{2}=?
\end{array} \quad C_{1} \times V_{1}=C_{2} \times V_{2}
$$

TRY THIS
 Basic dilutions, problem

What is the normality of sodium hydroxide (NaOH) solution if 25 mL of a 0.01 N sulfuric acid solution neutralizes 100 mL of the NaOH solution?

Basic dilutions, answer

What is the normality of sodium hydroxide (NaOH) solution if 25 mL of a 0.01 N sulfuric acid solution neutralizes 100 mL of the NaOH solution?

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& N_{1}=\frac{V_{2}}{V_{1}} \times N_{2}=\frac{25 \mathrm{~mL}}{100 \mathrm{~mL}} \times 0.01 \mathrm{~N}=0.0025 \mathrm{~N}
\end{aligned}
$$

KSA 112 math

- Calculate the density of liquids and which values to report, gallons that are discharged per day, and flow rate.
- Understand how to convert liquid measurements.

KSA 116 math

- Calculate volume unit conversions.

Density

Density - The density is the mass of a substance per unit volume. A related quantity is the specific gravity which is the density relative to water, which weights $1.0 \mathrm{grams} / \mathrm{ml}$. A solution with a specific gravity of 1.5 would weight $1.5 \mathrm{grams} / \mathrm{ml}$.

Units of density are $\mathrm{g} / \mathrm{mL}, \mathrm{mg} / \mathrm{L}, \mathrm{lb} / \mathrm{gal}$, etc.

Equivalents \& Formulas

You should also know these: SI PREFIXES
$365 \mathrm{~d} / \mathrm{y}$
$24 \mathrm{~h} / \mathrm{d}$
$60 \mathrm{~s} / \mathrm{min}$
$52 \mathrm{w} / \mathrm{y}$
$60 \mathrm{~min} / \mathrm{h}$
$3 \mathrm{ft} / \mathrm{yd}$
milli- $(\mathrm{m}): 10^{-3}=1 / 1000$
centi- (c): $10^{-2}=1 / 100$
kilo- (k): $10^{3}=1000$

Conversions

Volume

- Volume is the capacity of a unit or how much it will hold
- Measured in
- cubic units ($\mathrm{ft}^{3}, \mathrm{~m}^{3}, \mathrm{yd}^{3}$) or
- liquid volume units (gallons, liters, million gallons)

Conversion, problem

Example 1

- Convert $1800 \mathrm{ft}^{3}$ into gallons.
- We need the conversion factor that connects the two units

$$
1 \text { cubic foot of water }=7.48 \mathrm{gal}
$$

- This is a ratio, so it can be written two different ways

This conversion factor
($7.48 \mathrm{gal}_{\mathrm{gtt}}{ }^{3}$) is provided on the Equivalents \&
Formulas sheet

- We want to use the version that allows us to cancel out units and leave us in the units that we want

Conversion, answer

Convert $1800 \mathrm{ft}^{3}$ into gallons. $7.48 \mathrm{gal} / \mathrm{ft}^{3}$
$1800 \mathrm{ft}^{3} \times \frac{7.48 \mathrm{gal}}{\mathrm{ft}^{3}}=13,464 \mathrm{gal}$

TRY THIS Conversions, problem

Calculate the volume (in gallons) for a basin that measures 22 feet by 11 feet by 5 feet.
$V=L \times W \times H$
Rectangular Solid

$$
V=l w h
$$

Conversions, answer

Calculate the volume (in gallons) for a basin that measures 22 feet by 11 feet by 5 feet.

Rectangular Solid

$$
\begin{aligned}
V & =L \times W \times H=(22 f t)(11 f t)(5 f t) \\
& =1210 \mathrm{ft}^{3}
\end{aligned}
$$

$V=l w h$

Conversions, answer

Calculate the volume (in gallons) for a basin that measures 22 feet by 11 feet by 5 feet.

Rectangular Solid

$$
\begin{aligned}
V & =L \times W \times H=(22 f t)(11 f t)(5 f t) \\
& =1210 \mathrm{ft}^{3}
\end{aligned}
$$

$1210 \mathrm{ft}^{3} \times \frac{7.48 \mathrm{gal}}{\mathrm{ft}^{3}}=9050.8 \mathrm{gal}$

$V=l w h$

CWEA

KSA 106 math

- Calculate detention time, and minimum size of an interceptor using a set of given parameters.

KSA 201 math

- Calculate size requirements of basin/containment structures.

KSA 224 math

- Understand all aspects of a grease Interceptor, sizing requirements and clarifier calculations.

Detention time

Detention Time is Flow-Through Time

Be sure your time and volume units match!

Detention time, problem

The flow to a sedimentation tank 60 ft long, 30 ft wide, and 10 ft deep is 2.45 MGD. What is the detention time in the tank, in hours?

Tank Volume:
Volume $\left(\mathrm{ft}^{3}\right)=(\mathrm{L}, \mathrm{ft})(\mathrm{W}, \mathrm{ft})(\mathrm{d}, \mathrm{ft})$
Vol. $=(6 \mathrm{oft})(3 \mathrm{oft})(1 \mathrm{oft})=18000 \mathrm{ft}^{3}$
Vol. $=(18000 \mathrm{ft} 3)(7.48 \mathrm{gal} / \mathrm{ft} 3)=134640 \mathrm{gal}$
Flow Rate:
Flow $=$ MGD \rightarrow gph
$=(2.45$ MG/ dax) $(1$ dax $/ 24 \mathrm{hrs})(1000000 \mathrm{gal} / 1$ MGG $)$
$=102083.3333 \mathrm{gph}$
Detention Time, hrs $=\frac{\text { Volume of Tank, gal }}{\text { Flow, } g p h}$

Detention time, answer

Volume $=134,640 \mathrm{gal}$
Flow $\approx 102,083 \mathrm{gph}$
Detention Time, hrs $=\frac{\text { Volume of Tank, gal }}{\text { Flow, gph }}$

$$
t=\frac{V}{q}=\frac{134,640 \mathrm{gal}}{102,083 \mathrm{gal} / \mathrm{hr}} \approx 1.32 \mathrm{hr}
$$

Detention time

You could be asked to solve for any of the three variables:

$$
\begin{aligned}
t & =\frac{V}{q} \\
q & =\frac{V}{t} \\
V & =q t
\end{aligned}
$$

TRY THIS

The flow to a circular clarifier is 3,940,000 gpd. If the clarifier is 75 ft in diameter and 12 feet deep, what is the clarifier detention time in hours?

$$
\begin{array}{ll}
q=3,940,000 \mathrm{gpd} & V=\pi r^{2} h \\
d=75 \mathrm{ft} \\
h=12 \mathrm{ft} &
\end{array}
$$

Detention time, answer

$\mathrm{q}=3,940,000 \mathrm{gal} / \mathrm{d} x \mathrm{~d} / 24 \mathrm{hr} \approx 164,167 \mathrm{gal} / \mathrm{hr}$
$\mathrm{d}=75 \mathrm{ft}$
$\mathrm{h}=12 \mathrm{ft} \quad \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}$
$V=\pi r^{2} h=\pi\left(\frac{d}{2}\right)^{2} h=(3.14159)\left(\frac{75 f t}{2}\right)^{2}(12 f t) \approx 53,014 f t^{3}$
$53,014 \mathrm{ft}^{3} \times \frac{7.48 \mathrm{gal}}{f t^{3}} \approx 396,548 \mathrm{gal}$
$t=\frac{V}{q}=\frac{396,548 \mathrm{gal}}{164,167 \mathrm{gal} / \mathrm{hr}} \approx 2.42 \mathrm{hr}$

TRY THIS Containment, problem

A company is required to construct an outdoor spill containment system. This containment area must be capable of holding double the volume of the following tanks:
a. Square Tank 6 ft wide, 6 ft long and 6 ft high,
b. Rectangular Tank 4 ft wide, 20 ft long and 3 ft high,
c. Cylindrical Tank 8 ft in diameter and 9 ft high, and
d. A 12 -inch rainfall during a 24 -hour period.

The company is proposing to construct a 200 foot by 200 foot level containment pad surrounded by a 15 -inch wall. Will the containment system be adequate?
lgnore the "footprints" of the tanks.

Containment, answer

Square tank:
Rectangular tank:
Cylindrical tank:

$$
V_{1}=6 \times 6 \times 6=216 \mathrm{ft}^{3}
$$

$$
V_{2}=4 \times 20 \times 3=240 \mathrm{ft}^{3}
$$

$$
V_{3}=\pi r^{2} h=\pi(d / 2)^{2} h=\pi(8 / 2)^{2}(9) \approx 452 \mathrm{ft}^{3}
$$

$2 \times\left(V_{1}+V_{2}+V_{3}\right)=2(216+240+452)=1817 \mathrm{ft}^{3}$
Rainfall: $12 \mathrm{in} .=1 \mathrm{ft}, 1 \times 200 \times 200=40,000 \mathrm{ft}^{3}$
Total $=1817+40,000=41,817 \mathrm{ft}^{3}$
Proposed volume: $15 \mathrm{in} .=15 \mathrm{in} . \times \frac{f t}{12 \mathrm{in} .}=1.25 \mathrm{ft}$

$$
1.25 \times 200 \times 200=50,000 \mathrm{ft}^{3}>41,817 \mathrm{ft}^{3}
$$

KSA 117 math

- Understand how to measure and calculate sewer use fees.

KSA 203 math

- Calculate Production-Based and Mass-Based limits.

KSA 223 math

- Ability to calculate penalties for exceeding discharge limitations
KSA 224 math
- Calculate annual sewer service fees, organic loading and wastewater strength.

THE DAVIDSON PIE

(5) CWEA

Lbs/Day

mg/L
MGD
8.34

Davidson Pie

$\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd})$
The pie can be thought of as a fraction:

THE DAVIDSON PIE

$$
\frac{l b / d}{m g / L \bullet 8.34 \bullet m g d}
$$

Given any two of the three unknowns, you can solve for the third.
Quantities in the same half of the pie are multiplied together; those on opposite sides are divided.

Davidson Pie, problem

-Lab results for MLSS $=3000 \mathrm{mg} / \mathrm{L}$ -How many pounds of Mixed Liquor Suspended Solids are in the aeration basin if the basin volume is 2 million gallons?

$$
\mathrm{lb}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{MG})
$$

THE DAVIDSON PIE

Davidson Pie, answer

-Lab results for MLSS = $3000 \mathrm{mg} / \mathrm{L}$ -How many pounds of Mixed Liquor Suspended Solids are in the aeration basin if the basin volume is 2 million gallons?

$$
\mathrm{lb}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{MG})
$$

THE DAVIDSON PIE

$$
l b=\left(3000 \frac{\mathrm{mg}}{\mathrm{~L}}\right)(8.34)(2 M G)=50,040 l b
$$

TRY THIS Davidson Pie, problem

- Lab results for TSS = $25 \mathrm{mg} / \mathrm{L}$

THE DAVIDSON PIE

- How many pounds of Total Suspended Solids are being discharged to the receiving stream if your flow is 10 MGD?

$$
\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{MGD})
$$

Davidson Pie, answer

-Lab results for TSS $=25 \mathrm{mg} / \mathrm{L}$
THE DAVIDSON PIE

- How many pounds of Total Suspended Solids are being discharged to the receiving stream if your flow is 10 MGD?

$$
\begin{aligned}
& \mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd}) \\
& \frac{\mathrm{lb}}{d}=\left(25 \frac{\mathrm{mg}}{\mathrm{~L}}\right)(8.34)(10 \mathrm{MGD})=2085 \mathrm{lb} / \mathrm{d}
\end{aligned}
$$

Sewer-use fees, problem

A meat packing plant discharges a waste flow of 45,000 GPD with a BOD of $3,500 \mathrm{mg} / \mathrm{L}$ and suspended solids of $1,300 \mathrm{mg} / \mathrm{L}$. If the local POTW agency assesses the following charges, what would be the company's annual sewer service fee if the company works 260 days per year?

BOD	$=\$ 68.00 / \mathrm{lb} \mathrm{BOD}$
SS	$=\$ 59.00 / \mathrm{lb} \mathrm{SS}$
Flow	$=\$ 218.00 / \mathrm{MG}$

TRY TO FIND SS FEE pri 722 Sewer-use fees, answer

$\mathrm{q}=45,000 \mathrm{gpd}=0.045 \mathrm{MGD} \mathrm{BOD}=\$ 68.00 / \mathrm{lb} \mathrm{BOD}$
$\mathrm{BOD}=3500 \mathrm{mg} / \mathrm{L} \quad \mathrm{SS} \quad=\$ 59.00 / \mathrm{lb} \mathrm{SS}$
SS = $1300 \mathrm{mg} / \mathrm{L}$
260 d/y
Flow $=\$ 218.00 / \mathrm{MG}$
$\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd}) \quad$ fee $=\mathrm{lb} / \mathrm{d} \times \mathrm{d} / \mathrm{y} \times \$ / \mathrm{lb}$
$B O D=(3500)(8.34)(0.045) \frac{l b}{d}=1313.55 \mathrm{lb} / \mathrm{d}$
SS = ?
Flow = ?
Annual fee = ?

TRY TO FIND FLOW FEE Sewer-use fees, answer

$\mathrm{q}=45,000 \mathrm{gpd}=0.045 \mathrm{MGD} \mathrm{BOD} \quad=\$ 68.00 / \mathrm{lb} \mathrm{BOD}$
BOD $=3500 \mathrm{mg} / \mathrm{L}$
SS = $1300 \mathrm{mg} / \mathrm{L}$
260 d/y
$\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd}) \quad$ fee $=\mathrm{lb} / \mathrm{d} \times \mathrm{d} / \mathrm{y} \times \$ / \mathrm{lb}$
$B O D=(3500)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 68}{l b}=\$ 23,223,564.00$
$S S=(1300)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 59}{l b}=\$ 7,484,232.60$
Flow = ?

Sewer-use fees, answer

$\mathrm{q}=45,000 \mathrm{gpd}=0.045 \mathrm{MGD} \mathrm{BOD}=\$ 68.00 / \mathrm{lb} \mathrm{BOD}$
BOD $=3500 \mathrm{mg} / \mathrm{L}$
SS = $1300 \mathrm{mg} / \mathrm{L}$
260 d/y

$$
\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd}) \quad \text { fee }=\mathrm{lb} / \mathrm{d} \times \mathrm{d} / \mathrm{y} \times \$ / \mathrm{lb}
$$

$$
B O D=(3500)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 68}{l b}=\$ 23,223,564.00
$$

$$
S S=(1300)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 59}{l b}=\$ 7,484,232.60
$$

$$
\text { Flow }=(0.045 M G D) \times \frac{260 d}{y} \times \frac{\$ 218}{M G}=\$ 2550.60
$$

Sewer-use fees, answer

$q=45,000 \mathrm{gpd}=0.045 \mathrm{MGD}$ BOD $=3500 \mathrm{mg} / \mathrm{L}$
SS = $1300 \mathrm{mg} / \mathrm{L}$
260 d/y

BOD $\quad=\$ 68.00 / \mathrm{lb}$ BOD
SS $\quad=\$ 59.00 / \mathrm{lb} \mathrm{SS}$
Flow $=\$ 218.00 / \mathrm{MG}$
$\mathrm{lb} / \mathrm{d}=(\mathrm{mg} / \mathrm{L})(8.34)(\mathrm{mgd}) \quad$ fee $=\mathrm{lb} / \mathrm{d} \times \mathrm{d} / \mathrm{y} \times \$ / \mathrm{lb}$
$B O D=(3500)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 68}{l b}=\$ 23,223,564.00$
$S S=(1300)(8.34)(0.045) \frac{l b}{d} \times \frac{260 d}{y} \times \frac{\$ 59}{l b}=\$ 7,484,232.60$
Flow $=(0.045 M G D) \times \frac{260 d}{y} \times \frac{\$ 218}{M G}=\$ 2550.60$
Total $=\$ 23,223,564+\$ 7,484,233+\$ 2551=\$ 30,710,347$

Discharge penalty, problem

A metal finisher has the following discharge limitations: copper, $3.0 \mathrm{mg} / \mathrm{L}$; lead, $0.7 \mathrm{mg} / \mathrm{L}$; chromium, $2.7 \mathrm{mg} / \mathrm{L}$; and nickel, $3.3 \mathrm{mg} / \mathrm{L}$. The metal finisher had the following metal concentrations in a recent 24 -hour discharge sample collected and analyzed for sewer-use fees: Cu, $15.0 \mathrm{mg} / \mathrm{L} ; \mathrm{Pb}, 3.2 \mathrm{mg} / \mathrm{L} ; \mathrm{Cr}, 18.3 \mathrm{mg} / \mathrm{L}$; and $\mathrm{Ni}, 6.3$ mg / L. The metal finisher discharges a flow of 30,000 gallons per day (0.03 MGD). The sewer-use penalties in dollars per pound discharged over the limitations are: $\mathrm{Cu}, \$ 225 / \mathrm{lb} ; \mathrm{Pb}, \$ 325 / \mathrm{lb}$; $\mathrm{Cr}, \$ 250 / \mathrm{lb}$; and $\mathrm{Ni} \$ 375 / \mathrm{lb}$. What would be the metal finisher's daily monetary penalty for exceeding the discharge limitations?

Discharge penalty, problem

$\mathrm{Cu}=15 \mathrm{mg} / \mathrm{L} \quad$ limit $=3 \mathrm{mg} / \mathrm{LCu}$ $\mathrm{Pb}=3.2 \mathrm{mg} / \mathrm{L}$ $\mathrm{Cr}=18.3 \mathrm{mg} / \mathrm{L}$
$\mathrm{Ni}=6.3 \mathrm{mg} / \mathrm{L}$
limit $=0.7 \mathrm{mg} / \mathrm{L} \mathrm{Pb}$
limit $=2.7 \mathrm{mg} / \mathrm{LCr}$
limit $=3.3 \mathrm{mg} / \mathrm{L} \mathrm{Ni}$
$\mathrm{Q}=30,000 \mathrm{GPD}=0.03 \mathrm{MGD}$

Penalties over limit

- \$225/lb Cu
- \$325/lb Pb
- \$250/lb Cr
- \$375/lb Ni

TRY THE OTHERS Discharge penalty, answer

$\mathrm{Cu}=15 \mathrm{mg} / \mathrm{L}$
$\mathrm{Pb}=3.2 \mathrm{mg} / \mathrm{L}$
$\mathrm{Cr}=18.3 \mathrm{mg} / \mathrm{L}$
$\mathrm{Ni}=6.3 \mathrm{mg} / \mathrm{L}$
$\mathrm{Q}=0.03 \mathrm{MGD}$
limit $=3 \mathrm{mg} / \mathrm{LCu}$
limit $=0.7 \mathrm{mg} / \mathrm{L} \mathrm{Pb}$
limit $=2.7 \mathrm{mg} / \mathrm{LCr}$
limit $=3.3 \mathrm{mg} / \mathrm{L} \mathrm{Ni}$

Penalties over limit

- $\$ 225 / \mathrm{lb} \mathrm{Cu}$
- $\$ 325 / \mathrm{lb}$ Pb
- $\$ 250 / \mathrm{lb} \mathrm{Cr}$
- $\$ 375 / \mathrm{lb} \mathrm{Ni}$

Cu: $(15-3)(8.34)(0.03) x \$ 225=\$ 675.54$
Pb ?
Cr ?
Ni ?

Discharge penalty, answer

$\mathrm{Cu}=15 \mathrm{mg} / \mathrm{L}$
$\mathrm{Pb}=3.2 \mathrm{mg} / \mathrm{L}$
$\mathrm{Cr}=18.3 \mathrm{mg} / \mathrm{L}$
$\mathrm{Ni}=6.3 \mathrm{mg} / \mathrm{L}$
Q $=30,000 \mathrm{MGD}$
limit $=3 \mathrm{mg} / \mathrm{LCu}$
limit $=0.7 \mathrm{mg} / \mathrm{L} \mathrm{Pb}$
limit $=2.7 \mathrm{mg} / \mathrm{LCr}$
limit $=3.3 \mathrm{mg} / \mathrm{L} \mathrm{Ni}$

Penalties over limit

- $\$ 225 / \mathrm{lb} \mathrm{Cu}$
- \$325/lb Pb
- $\$ 250 / \mathrm{lb} \mathrm{Cr}$
- $\$ 375 / \mathrm{lb} \mathrm{Ni}$

Cu: $(15-3)(8.34)(0.03) \times \$ 225=\$ 675.54$

$$
8.34 \times 0.03=0.2502
$$

Pb: $(3.2-0.7)(0.2502) \times \$ 325=\$ 203.29$
Cr: $(18.3-2.7)(0.2502) \times \$ 250=\$ 975.78$
Ni: $(6.3-3.3)(0.2502) \times \$ 375=\$ 281.48$

$$
\text { Total }=\$ 2136.08
$$

KSA 209 math

- Understand how to calculate flow rate, and Open Channel Flow Measurement devices.

Velocity

- The speed at which something is moving
- Measured in

$$
\text { Velocity }=\frac{\text { distance }}{\text { time }}
$$

This equation is NOT on the Equivalents \& Formulas sheet; you should memorize it.

TRY THIS
 Velocity, problem

Blue dye is placed in a sewer line at a manhole. Three (3) minutes later, the dye appears in a manhole 125 feet down stream. What is the velocity of the flow in $\mathrm{ft} / \mathrm{min}$?

$$
\text { Velocity }=\frac{\text { distance }}{\text { time }}
$$

Velocity, answer

Blue dye is placed in a sewer line at a manhole. Three (3) minutes later, the dye appears in a manhole 125 feet down stream. What is the velocity of the flow in $\mathrm{ft} / \mathrm{min}$?

$$
\begin{gathered}
\text { Velocity }=\frac{\text { distance }}{\text { time }} \\
\text { Vel }=\frac{125 \mathrm{ft}}{3 \mathrm{~min}} \\
\text { Vel }=41.67 \mathrm{ft} / \mathrm{min}
\end{gathered}
$$

Flow

- The volume of water that flows over a period of time
- Measured in
$\circ f t^{3} / \sec \quad f t^{3} / \min \quad \mathrm{gal} /$ day $\quad \mathrm{MG} /{ }_{D}$

$$
\text { Flow }=(\text { Area })(\text { Velocity })
$$

$$
Q=A V
$$

This equation is NOT on the Equivalents \& Formulas sheet; you should memorize it.

TRY THIS Flow, problem

Water is flowing at velocity $3 \mathrm{ft} / \mathrm{sec}$ through a channel that is 2 feet wide and 1.5 feet deep. What is the flow in cubic feet per second?

$$
Q=A V
$$

App. Math

Flow, answer

Water is flowing at velocity $3 \mathrm{ft} / \mathrm{sec}$ through a channel that is 2 feet wide and 1.5 feet deep. What is the flow in cubic feet per second?

$$
\begin{gathered}
Q=A V \\
Q=(l)(w)(\text { velocity }) \\
Q=(2 f t)(1.5 f t)\left(3^{f t} / \mathrm{sec}\right) \\
Q=9 \mathrm{ft}^{3} / \mathrm{sec}
\end{gathered}
$$

The equation for the area of a rectangle ($L \times W$) is NOT on the Equivalents \& Formulas sheet; you should memorize it.

KSA 210 math

- Calculate and understand how to identify an illicit discharge in the sanitary sewer.

CWEA

Weighted average

Common example of weighted average is calculation of grade-point average:

$$
G P A=\frac{\sum g_{i} u_{i}}{\sum u_{i}}
$$

g_{i} are the grade points ($A=4, B=3$, etc.) u_{i} are the number of units

Weighted average, example

$$
G P A=\frac{\sum g_{i} u_{i}}{\sum u_{i}}
$$

UNITS	GRADE	POINTS	GRADE POINT
3	F	0	
2	D	1	
5	B	3	
TOTAL $=$			TOTAL $=$

Weighted average, example

UNITS	GRADE	POINTS	GRADE POINT
3	F	0	0
2	D	1	2
5	B	3	15

Weighted average, example

UNITS	GRADE	POINTS	GRADE POINT
3	F	0	0
2	D	1	2
5	B	3	15
10	$=\Sigma \mathrm{u}_{\mathrm{i}}$	$\Sigma \mathrm{g}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=$	17

Weighted average, example

UNITS	GRADE	POINTS	GRADE POINT
3	F	0	0
2	D	1	2
5	B	3	15
10	$=\mathrm{u}_{\mathrm{i}}$	$\mathrm{g}_{\mathrm{i}}=$	

Illicit discharge, problem

A plating company has an underground hard chrome waste recirculation tank located close to an underground sewer. The company's wastestream flow is 25,000 gallons per day with a chromium content of 10.5 mg / L. During routine sewer monitoring upstream and downstream of this company, the following information was obtained:

Upstream	Downstream
150,000 GPD	175,000 GPD
$0.85 \mathrm{mg} / \mathrm{L}$	$3.2 \mathrm{mg} / \mathrm{L}$

Could the inspector suspect a leak in the underground chromium tank migrating into the sewer system?

CWEA

Illicit discharge, answer

A plating company has an underground hard chrome waste recirculation tank located close to an underground sewer. The company's wastestream flow is 25,000 gallons per day with a chromium content of 10.5 mg / L. During routine sewer monitoring upstream and downstream of this company, the following information was obtained:

	Upstream	Downstream	
Flow, GPD	$150,000 \mathrm{GPD}$	$175,000 \mathrm{GPD}$	$\mathrm{q}_{1}=25,000 \mathrm{gpd}$
Chromium Conc, mg / L	$0.85 \mathrm{mg} / \mathrm{L}$	$3.2 \mathrm{mg} / \mathrm{L}$	$\mathrm{C}_{1}=10.5 \mathrm{mg} / \mathrm{L}$
Could the inspector suspect a leak in the underground	$\mathrm{q}_{2}=150,000 \mathrm{gpd}$		
chromium tank migrating into the sewer system?	$\mathrm{C}_{2}=0.85 \mathrm{mg} / \mathrm{L}$		
	$\mathrm{C}=3.2 \mathrm{mg} / \mathrm{L}$		

CWEA

Illicit discharge, answer

$$
\begin{gathered}
\mathrm{q}_{1}=25,000 \mathrm{gpd} \quad \mathrm{q}_{2}=150,000 \mathrm{gpd} \\
\mathrm{c}_{1}=10.5 \mathrm{mg} / \mathrm{L} \quad \mathrm{c}_{2}=0.85 \mathrm{mg} / \mathrm{L} \\
\mathrm{c}=3.2 \mathrm{mg} / \mathrm{L} \\
c=\frac{\sum c_{i} q_{i}}{\sum q_{i}}=\frac{(10.5 \mathrm{mg} / \mathrm{L})(25,000 \mathrm{gpd})+(0.85 \mathrm{mg} / \mathrm{L})(150,000 \mathrm{gpd})}{(25,000+150,000) \mathrm{gpd}} \\
=\frac{262,500+127,500}{25,000+150,000}=\frac{390,000}{175,000}=2.23 \mathrm{mg} / \mathrm{L}
\end{gathered}
$$

$3.2>2.23$, so there does appear to be a leak

Weighted average, problem

The local municipal sewage treatment plant's effluent has a TDS averaging $600 \mathrm{mg} / \mathrm{L}$. The flow averages 24 MGD. The maximum allowable discharge of TDS in the effluent is 750 mg / L. A new industry is proposing to locate in this town and to discharge 1.5 MGD to the sewer. The agency intends to keep the treatment plant's effluent TDS below $710 \mathrm{mg} / \mathrm{L}$.

What is the maximum TDS concentration the new industry can discharge at the proposed 1.5 MGD flow rate?

$$
\begin{array}{ll}
\mathrm{c}_{1}=600 \mathrm{mg} / \mathrm{L} & \mathrm{c}_{2}=? \\
\mathrm{q}_{1}=24 \mathrm{MGD} & \mathrm{q}_{2}=1.5 \mathrm{MGD}
\end{array}
$$

TRY THIS Weighted average, answer

$$
\begin{array}{ll}
\begin{array}{l}
\mathrm{c}_{1}=600 \mathrm{mg} / \mathrm{L} \\
\mathrm{q}_{1}=24 \mathrm{MGD} \\
\mathrm{c} \leq 710 \mathrm{mg} / \mathrm{L}
\end{array} & \mathrm{c}_{2}=? \\
\mathrm{q}_{2}=1.5 \mathrm{MGD} \\
c & =\frac{\sum c_{i} q_{i}}{\sum q_{i}}=\frac{c_{1} q_{1}+c_{2} q_{2}}{q_{1}+q_{2}}
\end{array}
$$

Weighted average, answer

$$
\left.\begin{array}{rl}
\begin{array}{l}
\mathrm{c}_{1}=0 \mathrm{mg} / \mathrm{L} \\
\mathrm{q}_{1}=24 \mathrm{MGD} \\
\mathrm{c} \leq 710 \mathrm{mg} / \mathrm{L}
\end{array} & \mathrm{c}_{2}=\mathrm{X} \\
\mathrm{q}_{2}=1.5 \mathrm{MGD}
\end{array}\right] \begin{aligned}
& \mathrm{c}=\frac{\sum c_{i} q_{i}}{\sum q_{i}}=\frac{c_{1} q_{1}+c_{2} q_{2}}{q_{1}+q_{2}} \\
& 710=\frac{(600)(24)+(X)(1.5)}{24+1.5}
\end{aligned}
$$

SOLVE FOR X

Weighted average, answer

$$
710=\frac{(600)(24)+(X)(1.5)}{24+1.5}
$$

$$
1.5 X+14,400=710(24+1.5)
$$

$$
X=\frac{710(25.5)-14,400}{1.5}=2470 \mathrm{mg} / L
$$

(5) CWEA

QUESTIONS?

TRAINER: KENT O. MCINTOSH / KENTOMCINTOSH@GMAIL.COM CWEA: MEMBERSERVICES@CWEA.ORG
(510) 382-7800

